首页> 外文OA文献 >Approximate Message Passing Algorithm with Universal Denoising and Gaussian Mixture Learning
【2h】

Approximate Message Passing Algorithm with Universal Denoising and Gaussian Mixture Learning

机译:具有通用去噪和近似的近似消息传递算法   高斯混合学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study compressed sensing (CS) signal reconstruction problems where aninput signal is measured via matrix multiplication under additive whiteGaussian noise. Our signals are assumed to be stationary and ergodic, but theinput statistics are unknown; the goal is to provide reconstruction algorithmsthat are universal to the input statistics. We present a novel algorithmicframework that combines: (i) the approximate message passing (AMP) CSreconstruction framework, which solves the matrix channel recovery problem byiterative scalar channel denoising; (ii) a universal denoising scheme based oncontext quantization, which partitions the stationary ergodic signal denoisinginto independent and identically distributed (i.i.d.) subsequence denoising;and (iii) a density estimation approach that approximates the probabilitydistribution of an i.i.d. sequence by fitting a Gaussian mixture (GM) model. Inaddition to the algorithmic framework, we provide three contributions: (i)numerical results showing that state evolution holds for non-separable Bayesiansliding-window denoisers; (ii) an i.i.d. denoiser based on a modified GMlearning algorithm; and (iii) a universal denoiser that does not needinformation about the range where the input takes values from or require theinput signal to be bounded. We provide two implementations of our universal CSrecovery algorithm with one being faster and the other being more accurate. Thetwo implementations compare favorably with existing universal reconstructionalgorithms in terms of both reconstruction quality and runtime.
机译:我们研究压缩感测(CS)信号重构问题,其中在加性白高斯噪声下通过矩阵乘法测量输入信号。假设我们的信号是平稳的和遍历的,但是输入统计信息未知;目标是提供输入统计数据通用的重建算法。我们提出了一种新颖的算法框架,该框架结合了:(i)近似消息传递(AMP)CS重建框架,该框架通过迭代标量信道去噪解决了矩阵信道恢复问题; (ii)一种基于上下文量化的通用降噪方案,该方案将固定的遍历信号降噪分为独立且分布均匀的(i.i.d.)子序列降噪;和(iii)一种密度估计方法,该方法近似于i.i.d的概率分布。通过拟合高斯混合(GM)模型来排序。除算法框架外,我们还提供了三点贡献:(i)数值结果表明状态演化适用于不可分离的贝叶斯滑动窗口降噪器; (ii)i.i.d.基于改进的GMlearning算法的降噪器; (iii)通用降噪器,该通用降噪器不需要有关输入从输入信号中取值或将输入信号定界的范围的信息。我们提供了通用CSrecovery算法的两种实现方式,一种更快,另一种更精确。就重建质量和运行时间而言,这两种实现方式均与现有的通用重建算法相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号